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1 Instructions

Please complete all exercises. There are two in total

2 Cofiber Sequences II

Fix a map f : X → Y . The mapping cone Cf = Y ∪f CX is constructed with a particular
universal property in mind. If g : Y → Z is a map such that the composition gf is null
homotopic, then a choice of homotopy F : gf ' ∗ gives rise to a map g

F
as that induced

out of the pushout in the following diagram

X

f

��

in0 // CX

�� F

��

Y

g //

// Cf
g
F

!!C
C

C
C

Z.

(2.1)

We call

g
F

: Cf → Z,

{
y 7→ g(y)

(x, t) 7→ F (x, t)
(2.2)

the extension of g defined by F . It’s important to realise that both g
F

and its homotopy
class depend on the choice of homotopy F . In fact we will see some examples below where
different choices of F give rise to completely different homotopy classes of extension.
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Definition 1 We say that a three-term sequence of spaces and maps

X
f−→ Y

g−→ Z (2.3)

is a homotopy cofiber sequence if i) the composition gf is null homotopic, and ii) there
exists a null homotopy F : g ◦ f ' ∗ for which the extension

g
F

: Cf → Z (2.4)

is a homotopy equivalence.
We generalise this definition to arbitrarily long sequences of spaces and maps by saying

that
X0

f0−→ X1
f1−→ X2

f2−→ X3 → . . .→ Xn
fn−→ Xn+1 → . . . (2.5)

is a homotopy cofiber sequence if each three-term subsequence is a homotopy cofiber
sequence in the previous sense. �

Example 2.1

1. The sequence

X
f−→ Y → Cf (2.6)

is a homotopy cofiber sequence. The required null homotopy F comes from the pushout
which defines Cf . Of course this is the canonical example of such an object, and the
definition was formulated to make it so.

2. If j : A ↪→ X is a cofibration, then the ‘strict’ cofiber sequence

A
j−→ X

q−→ X/A (2.7)

is a homotopy cofiber sequence. The composition is strictly null and in this rather
special case we can take F to be the constant homotopy. Then the extension is exactly
the homotopy equivalence Cf → Cf/CA ∼= X/A which we used when studying these
objects before. �

What is the link between these two examples? Last week in the exercises you figured
out how to convert a map f : X → Y into a cofibration. For ease you worked in the
unpointed category and found to replace f with the inclusion X ↪→ M̃j into its unreduced
mapping cylinder. The same construction also works in the pointed category when we use
the reduced mapping cylinder Mf = Y ∪ X ∧ I+. What results is the following strictly
commutative diagram of pointed maps

X
jf

~~||
||
||
|| f

��?
??

??
??

?

Mf

rf // Y

(2.8)

in which jf is a pointed cofibration and rf is a homotopy equivalence. We get from this the
strict cofiber sequence

X
jf−→Mf

qf−→ Cf (2.9)
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and to go from here to the homotopy cofibration sequence (2.6) is just a matter of using the
homotopy equivalence rf to identify Mf and Y . The need to generalise ‘strict’ to ‘homotopy’
is the price we must pay for not starting with a cofibration. In the case that f is a cofibration,
then your work last week showed that rf is a homotopy equivalence under X, and the two
notions are essentially identical.

Now, we claim that

X
f−→ Y

qf−→ Cf
δ−→ ΣX

Σf−→ ΣY
qΣf−−→ CΣf → . . . (2.10)

is a homotopy cofiber sequence. We won’t spell out all the details, but what we would like
to draw attention to is the disappearance of the annoying minus signs. The map δ is defined
by {

δ(y) = ∗
δ(x, t) = x ∧ t

(2.11)

and the required null homotopy Fs : Σf ◦ δ ' ∗ is given by{
Fs(y) = y ∧ s
Fs(x, t) = f(x) ∧ ((1− s)t+ s) .

(2.12)

Notice that although δqf = ∗ holds strictly we do not use the constant homotopy. Essentially
what we’ve done is absorb the minus sign that appeared in the strict cofiber sequence inside
the homotopy F .

Proposition 2.1 Let f : X → Y be a map. Then for any space Z the sequence

[X,Z] [Y, Z]
f∗oo [Cf , Z]

q∗oo [ΣX,Z]δ∗oo [ΣY, Z]
Σf∗oo [ΣCf , Z]

Σq∗oo . . .oo

. . . [ΣnX,Z]oo [ΣnY, Z]
Σnf∗oo [ΣnCf , Z]

Σnq∗oo . . .oo

(2.13)
is exact. The first three terms are exact in the sense of pointed sets, the next three terms
are exact in the sense of groups, and the remaining terms are exact in the sense of abelian
groups.

Proof The proof of exactness of the sequence reduces to proving exactness of each of its
three-term subsequences, and exactness here comes from the fact that each three-term sub-
sequence of (2.10) is pointwise equivalent to a strict cofiber sequence. For instance, at the
first stage the homotopy commutative diagram

X
jf //Mf

' rf

��

// Cf

X
f // Y

q // Cf

(2.14)

in which the vertical arrows are homotopy equivalences leads to exactness of

[X,Z]
f∗←− [Y, Z]

q∗f←− [Cf , Z]. (2.15)
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At the next stage we find a suitable null homotopy F : δ ◦ qf ' ∗ and get a homotopy
commutative diagram

Y
qf // Cf // Cqf

q
F'
��

Y
qf // Cf

δ // ΣX.

(2.16)

We argue as before that applying [−, Z] to the top row of the diagram leads to an ex-
act sequence, so infer from the fact that the vertical arrows in the diagram are homotopy
equivalences that

[Y, Z]
q∗←− [Cf , Z]

δ∗←− [ΣX,Z] (2.17)

is exact.
At the higher stages the homotopy sets obtain group structures from the suspensions.

The suspended maps are co-H-maps which induce homomorphisms between the groups. In
this case we have to be careful when constructing the coextensions so that these too preserve
the group structures. The trick here is to recall that suspension preserves pushouts (cf.
Pointed Homotopy Co. 1.13), so we have a canonical homeomorphism ΣCf ∼= CΣf . Now if
Fs : g ◦ f ' ∗ is a null homotopy which induces g

F
, then ΣFs : Σg ◦ Σf , x ∧ t 7→ Fs(x) ∧ t,

is a null homotopy which induces Σg
ΣF

= Σg
F

. We leave the task of filling in the details to
the reader.

From this point we’ll quickly lose the need to differentiate between ‘strict’ and ‘homotopy’
cofibrings. We’ll generally just refer to them as cofibration sequences. While we need the
strictness to make the exactness work, the more flexible notion is both easier to work with
and more intuitive.

Exercise 2.1 The purpose of this short exercise is to allow you get a handle on how exten-
sions work. Prove that

X → ∗ → ΣX
=−→ ΣX → ∗ → Σ2X

=−→ Σ2X → ∗ → . . . (2.18)

a homotopy cofibration sequence. You’ll notice that at the beginning of the sequence the
obvious null homotopy does not generate an extension which meets the second requirement
of Definition (1). �

We saw last week how cofibration sequences give rise to long exact sequences in homology
and cohomology. We’ll leave the reader to formulate a precise statement of the fact that
homotopy cofibration sequences also lead to long exact sequences. The following examples
give some intuition as to how to use this in practice.

Example 2.2 Suppose that X is obtained from A by attaching an n-cell along a map
ϕ : Sn−1 → A. Then there is a cofiber sequence

Sn−1 ϕ−→ A→ X
q−→ Sn

Σϕ−→ ΣA→ ΣX → . . . (2.19)

The connecting map q in this case is just the quotient map which pinches A to a point. The
point is that ϕ is very unlikely to be an actual cofibration. In the examples below it will be
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a fibration. Nevertheless we see quite clearly through the exact sequences related to (2.19)
how its homotopy class influences the topology of X.

For instance we form the real projective plane by attaching a 2-cell to S1 ∼= RP 1 along
the two-sheeted covering projection

S1 2−→ S1 → RP 2 → S2 2−→ S2 → ΣRP 2 → . . . (2.20)

The cofiber sequences give exact sequences in homology and cohomology as we saw last week
and the exactness of

· · · ← H2S1 ← H2S1 ← H2RP 2 ← H2S2 ×2←− H2S2 ← . . . (2.21)

is just the standard computation that H2RP 2 ∼= Z2. Another way to interpret this informa-
tion is that the connected two-sheeted covering projection S1 → S1 is the degree 2 map, a
fact which takes a little work to prove using degree theory.

For another example, consider the complex projective plane. This is obtained by attach-
ing a 4-cell to S2 ∼= CP 1 along the Hopf map η ∈ π3S

2. This gives a cofiber sequence

S3 η−→ S2 → CP 2 q−→ S4 Ση−→ S3 → ΣCP 2 → S5 → . . . (2.22)

and immediately tells us a couple of things. Firstly we know that the cohomology ring

H∗CP 2 ∼= Z[x]/(x3) (2.23)

is a truncated polynomial ring generated by a degree 2 class x. We infer from this that
CP 2 6' S2 ∨ S4. But since CP 2 is the homotopy cofiber of η, this implies that η 6' ∗. For
the mapping cone of the constant map S3 → S2 is homotopy equivalent to S2 ∨ S4, so if η
were null homotopic, then it would not be possible to have the cofibration sequence (2.22).

Thus we see the presence of a non-trivial element in π3S
2. Eventually we will be able to

use so-called cohomology operations to show also that ΣnCP 2 6' Sn+2 ∨ Sn+4 for all n ≥ 0,
and at this stage the cofibration sequence (2.22) will also show us the presence of a non-trivial
element in πn+1S

n for all n ≥ 2. �

Let us begin to study the naturality of the cofibration sequences. Assume that we have
two maps f : X → Y and g : Y → Z. There are three cofiber sequences we can study, but
for the moment we’ll only be interested in those corresponding respectively to gf and g

X
gf−→ Z → Cgf

δ−→ ΣX → . . . (2.24)

Y
g−→ Z → Cg

ρ−→ ΣY → . . . (2.25)

We get a map θ : Cgf → Cg as that induced by taking pushouts of the rows in the following
diagram

Z X
gfoo //

f
��

CX

Cf
��

Z Yg
oo // CY

Cgf

θ
��
Cg

(2.26)
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Explicitly {
θ(z) = z

θ(x, t) = (f(x), t).
(2.27)

We check that this makes the following diagram commute (at least up to homotopy)

X

f

��

gf // Z
ρ // Cgf

θ
��

δ // ΣX

Σf

��

// . . .

Y
g // Z

δ // Cg
ρ // ΣY // . . .

(2.28)

Here the rows are the cofibration sequences induced by gf and g, respectively, and the
connecting maps δ, ρ are defined as in (2.11). Of course by taking suspensions we can make
the diagram continuous onwards for as long as we like.

Exercise 2.2 The purpose of this exercise is to greatly strengthen the conclusion of Example
2.2 and show that π3S

2 in fact contains an infinite cyclic summand. We won’t be able to
conclude using these methods that the group is actualy isomorphic to Z (it is, and we will
show this in the lectures), but it gives us a good chance to get to grips with how some of
the techniques developed in this sheet may be used.

1. Fix a space X. Using the definition of homotopy groups from the Co-H-Spaces exer-
cises, show that if k is an integer and α ∈ πnX, then

k · α =


α + α + · · ·+ α (k times) k > 0

0 k = if 0

−α− α− · · · − α (k times) k < 0

(2.29)

is given by the composition

k · α : Sn
k−→ Sn

α−→ X (2.30)

where k : Sn → Sn is the degree k map.

2. Now consider the Hopf map η ∈ π3S
2. We will be more definite with its definition in

future, but all we need for this exercise is that it is an essential map S3 → S2. The
argument for this was contained in Example 2.2, so you will need to understand it to
proceed. Fix an integer k ≥ 1 and write

C(k) = Ck·η (2.31)

for the mapping cone of k · η. Now factor this map as k · η = η ◦ k and use the diagram

S3

k

��

k·η // S2 // C(k)

θ
��

// . . .

S3 η // S2 // CP 2 // . . .

(2.32)

to compute the cohomology ring H∗C(k). Here θ is the map induced as in (2.26). You
will need to know the action of the degree k map on H∗Sn and the cohomology ring
(2.23).

3. Make your conclusions and complete the original claim. �
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